domingo, 5 de diciembre de 2010

Práctica: Producción de oxígeno e identificación de glucosa en Elodea expuesta a la luz y a la oscuridad

Producción de oxígeno e identificación de glucosa en Elodea expuesta a la luz y a la oscuridad

Preguntas generadoras:


1. ¿Qué organismos producen el oxígeno en el planeta?
2. ¿Qué necesitan para producir oxígeno?
3. ¿Qué papel desempeña la luz en el proceso fotosintético?

Hipótesis:

La planta necesita de luz solar para llevar a cabo la fotosíntesis,
porque esta necesita de energía solar para convertirla en energía
química para usarla en la fotosíntesis por lo tanto inferimos que en
la muestra de la práctica que se tapó con papel aluminio, no se
realizara la fotosíntesis, porque no cuenta con la energía lumínica,
mientras que en la expuesta a la luz si se realizara este proceso de
fotosíntesis porque cuenta con los principales componentes para llevar
a cabo la fotosíntesis.

Introducción


Las plantas verdes liberan oxígeno molecular (O2) como producto de la fotosíntesis y representa el 20% de la atmósfera terrestre. Este oxígeno satisface los requerimientos de todos los organismos terrestres que lo respiran, además cuando se disuelve en agua, cubre las necesidades de los organismos acuáticos.
La luz es uno de los recursos esenciales para las plantas; es una forma de energía procedente del sol y no una sustancia. La luz se transforma por procesos biofísicos en energía química durante la fotosíntesis. La luz que se usa en la fotosíntesis corresponde a las longitudes de onda que van de los 380 a 760 nanómetros, es decir una fracción pequeña de todo el espectro de energía radiante que el sol emite. La energía contenida en la luz permite que los cloroplastos puedan modificar la estructura química del dióxido de carbono y el agua, para transformarlos en compuestos orgánicos.

Objetivos:

• Conocer el efecto que produce la luz sobre las plantas de Elodea en condiciones de luminosidad y oscuridad.
• Comprobar que las plantas producen oxígeno.

Material:

1 palangana
1 pliego de papel aluminio 1 vaso de precipitados de 250 ml 2 vasos de precipitados de 600 ml
1 caja de Petri ó vidrio de reloj
2 embudos de vidrio de tallo corto
2 tubos de ensayo
1 probeta de 10 ml
1 gotero 1 espátula
1 varilla de ignición (o pajilla de escoba de mijo)
Cerillos o encendedor
Material biológico:
2 ramas de Elodea
Sustancias:
Fehling A
Fehling B
Glucosa
Agua destilada
Equipo:
Balanza granataria electrónica
Parrilla con agitador magnético
Microscopio óptico

Procedimiento:

A. Montaje de los dispositivos.
Enjuaga con agua de la llave la planta de Elodea que se utilizará en la práctica. Selecciona dos ramas jóvenes. Verifica en la balanza granataria electrónica que las ramas pesen exactamente lo mismo.
Llena la palangana con agua de la llave. Lo siguiente deberá hacerse dentro de la palangana, por debajo del agua.
1. Introduce un vaso de precipitados de 600 ml
2. Coloca una rama de Elodea dentro de un embudo de vidrio de tallo corto e introduce el embudo en forma invertida al vaso de precipitados de 600 ml, cuidando que la planta se mantenga dentro del embudo.
3. Posteriormente introduce un tubo de ensayo y colócalo en forma invertida en el tallo del embudo, verificando que no contenga burbujas.
4. Saca el montaje y colócalo sobre la mesa.
Repite la misma operación con la otra rama de Elodea.
Una vez que ya se tienen los dos montajes, colócalos a temperatura ambiente. Uno de ellos se dejará en condiciones de luminosidad natural y el otro se cubrirá con papel aluminio. Deja transcurrir 48 horas.
B. Después de transcurridas las 48 horas.
Antes de iniciar la actividad observa ¿Qué se formó en los tubos de ensaye de los montajes que dejaste en luz y en oscuridad?
Enseguida toma el montaje que se dejó en condiciones de luminosidad natural y agrega más agua al dispositivo, de tal manera que al sumergir la mano al vaso de precipitados, puedas tapar con el dedo pulgar ó índice la boca del tubo de ensayo que se encuentra invertido en el vaso de precipitados, con el propósito de impedir la salida del gas contenido en el interior del tubo.
Enciende una varilla de ignición (utiliza una pajilla de escoba de mijo), y espera hasta que aparezca una pequeña brasa, apaga la flama de la pajilla e introdúcela al interior del tubo que contiene el gas, observa qué le sucede a la brasa de la pajilla.

Repite los pasos 2 y 3 con el montaje que se dejó envuelto con el papel aluminio.
C. Preparación de las soluciones para realizar la prueba control y la prueba de identificación de glucosa
Pesa 1 gr de glucosa, colócala en un vaso de precipitados de 250 ml y agrega 100 ml de agua destilada para preparar una disolución de glucosa al 1%. Rotula el vaso de precipitados con la leyenda: Glucosa al 1%.
Toma todas las hojas de la planta de Elodea del montaje que se dejó en condiciones de luz, y tritúralas en un mortero hasta obtener un homogenizado.
Procede a realizar la prueba control y la prueba de identificación de glucosa y anota tus observaciones.
Prueba control:
Mezcla 2 ml de Fehling A y 2 ml de Fehling B en un tubo de ensayo, agrega 10 ml de la solución de glucosa al 1%. Agita suavemente. Calienta en baño maria hasta la ebullición y observa lo que sucede.
Prueba de identificación de glucosa:
Mezcla 2 ml de Fehling A y 2 ml de Fehling B en un tubo de ensayo, coloca el macerado de las hojas de Elodea. Ponlos a calentar en baño maria hasta la ebullición. Realiza una preparación temporal de Elodea y observa al microscopio con el objetivo de 10x.
Repite la parte C desde el paso 2, con el montaje que se dejó en condiciones de oscuridad.

Resultados:




Presencia de Glucosa




Elodea expuesta a la Oscuridad


Elodea expuesta a la Luz



Parte B. Anota tus observaciones de lo que se formó en el tubo de ensayo que dejaste en luz y en el tubo de ensayo que dejaste envuelto en papel aluminio.
¿Qué sucedió con la pajilla al acercarla a los dos tubos de ensayo? ¿Por qué crees que ocurrió esto?
En los dos tubos de ensayo hubo producción de oxigeno ya que al hacer la prueba con la pajilla reavivo la llama aunque en el tubo que se expuso a la luz había mayor presencia de oxígeno.
Parte C. Si en la prueba de identificación de glucosa, se observa el cambio de coloración de azul a naranja, indica positivo para la presencia de glucosa.
Si al examinar la preparación en el objetivo de 10x se observan zonas teñidas de color naranja, indican positivo para la presencia de glucosa.

Análisis de los resultados:

¿Cómo se llama lo que se produjo dentro de los tubos de ensayo?
En tus propias palabras explica ¿Qué factores intervinieron en la producción de lo que apareció dentro de los tubos de ensayo? ¿Por qué?
¿Cuál es la importancia de la luz para la producción de oxígeno?

Replanteamiento de las predicciones de los alumnos:

Mediante procesos biofísicos la luz solar es transformada en energía química, la energía contenida en la luz solar permite que los cloroplastos puedan modificar la estructura química del dióxido de carbono y el agua.


Conceptos clave:


Monosacáridos: o azúcares simples son los glúcidos más sencillos, están formados por una sola molécula y no pueden ser hidrolizados a glúcidos más pequeños.
Glucosa es un azúcar que es utilizado por los tejidos como forma de energía al combinarlo con el oxígeno de la respiración.
Reacción el proceso en el que una o más sustancias —los reactivos— se transforman en otras sustancias diferentes
Reactivo de Fehling: es una solución descubierta por el químico alemán Hermann von Fehling y que se utiliza como reactivo para la determinación de azúcares reductores. Sirve para demostrar la presencia de glucosa, así como para detectar derivados de esta tales como la sacarosa o la fructosa.
Oxígeno. es un gas incoloro e inodoro que condensa en un líquido azul pálido.

Relaciones.

Este tema es importante porque permite observar en el laboratorio la producción de oxígeno y de glucosa por las plantas expuestas a la luz y por lo tanto sirve para ubicar a los alumnos en la explicación de la importancia de la luz en la fotosíntesis.

Cyberografia:


http://www.bedri.es/Libreta_de_apuntes/M/MO/Monosacaridos.htm
http://www.ferato.com/wiki/index.php/Glucosa
http://es.wikipedia.org/wiki/Reacci%C3%B3n_qu%C3%ADmica
http://es.wikipedia.org/wiki/Reactivo_de_Fehling
http://www.textoscientificos.com/quimica/inorganica/oxigeno

domingo, 28 de noviembre de 2010

lectura 3: nutricion heterotrofa

lectura # 2: heterotrofa

practica #3, 4, 5. Alimentacion heterotrofa.

Actividad experimental 3: alimentación heterótrofa.

Digestión de la albúmina por “pepsina” industrial

Preguntas generadoras:
1.    ¿Cómo actúa la pepsina sobre las proteínas?

-La pepsina se produce en el estómago, actúa sobre las proteínas degradándolas, y proporciona péptidos y aminoácidos en un ambiente muy ácido.

2.    ¿Cómo están formadas las proteínas?
- Las proteínas son macromoléculas formadas por cadenas lineales de aminoácidos.

3.    ¿Qué es la pepsina?

-La pepsina es una peptidasa, una enzima digestiva que degrada las proteínas en el estómago

4.    ¿Cuál es el papel que desempeñan las proteínas del alimento, en los animales?

-Las proteínas desempeñan un papel fundamental para la vida y son las bio moléculas más versátiles y más diversas. Son imprescindibles para el crecimiento del organismo.
Realizan una enorme cantidad de funciones diferentes, entre ellas estructural (colágeno y queratina), reguladora (insulina y hormona del crecimiento), transportadora (hemoglobina), defensiva (anticuerpos), enzimática (sacarasa y pepsina) y contráctil (actina y miosina).

5.    ¿Por qué es necesario que se digieran las proteínas del alimento?

-Porque se tienen que simplificar para ser absorbidos.
6.    ¿Qué es la hidrólisis de una proteína?

- La proteína hidrolizada es una proteína hidrolizada, es decir separada en sus partes constituyentes: los aminoácidos. Las proteinas hidrolizadas suelen provenir de fuentes animales o de fuentes vegetales.

7.    ¿Qué papel desempeña el ácido clorhídrico al actuar sobre la pepsina?

-separa los enlaces de  la pepsina, es decir ayuda a hidrolizar la pepsina.




Planteamiento de las hipótesis:

-La pepsina degrada las proteínas en el estómago
-se produce en el estómago y actúa sobre las proteínas degradándolas.
- Una reacción característica de los polipéptidos es la reacción de Biuret, las proteínas y los aminoácidos no dan positiva esta reacción.
- El jugo gástrico contiene ácido clorhídrico libre y dos enzimas: quimosina y pepsina y ambas son secretadas como proenzimas inactivas, y en presencia del ácido clorhídrico se transforman espontáneamente en enzimas activas.


Introducción

La pepsina es una péptida, una enzima digestiva que degrada las proteínas en el estómago; las otras enzimas digestivas importantes son la tripsina y la quimotripsina. La pepsina se produce en el estómago, actúa sobre las proteínas degradándolas, y proporciona péptidos y aminoácidos en un ambiente muy ácido.
La pepsina es más activa con un pH de entre 2 y 4. Se desactiva permanentemente con un pH superior a 6. Corta a los aminoacidos Fenilalanina (Phe), Tirosina(Tyr) y al Triptófano(Trp)en los grupos aminos.

El jugo gástrico, elaborado por las glándulas de la mucosa del estómago, contiene ácido clorhídrico libre y dos enzimas: quimosina y pepsina. En realidad ambas son secretadas como proenzimas inactivas, y en presencia del ácido clorhídrico se transforman espontáneamente en enzimas activas.

Durante la digestión de las proteínas (polímeros de aminoácidos) se hidrolizan los enlaces peptídicos de estas moléculas. Este proceso se inicia en el estómago por acción de las pepsinas que rompen las uniones (enlaces peptídicos) a  nivel de los aminoácidos fenilalanina y tirosina, de manera que los productos de la digestión gástrica de las proteínas son polipéptidos de muy diversos tamaños. La mayor parte de la digestión de proteínas se produce en el intestino delgado, donde los productos de la digestión gástrica son hidrolizados hasta aminoácidos, primero por la acción de las enzimas proteolíticas del jugo pancreático y después por las enzimas asociadas a las células de las microvellosidades.

Una reacción característica de los polipéptidos es la reacción de Biuret, las proteínas y los aminoácidos no dan positiva esta reacción 

Objetivos:
·          Identificar la acción de la pepsina sobre las proteínas
·          Identificar los productos de la acción de la pepsina sobre las proteínas
·          Comprender la acción de los jugos gástricos en la digestión química del alimento
·          Conocer cómo se puede activar una enzima

Material:
1 vaso de precipitados de 1000 ml
Papel filtro
1 embudo
1 probeta de 100 ml
1 gradilla
4 tubos de ensayo
4 probetas de 10 ml
Gasas


Material biológico:
Claras de huevo


Sustancias:
Ácido clorhídrico 0.1 N
Reactivo de Biuret
Pepsina

Equipo:
1 balanza granataria electrónica
1 parrilla con agitador magnético

Procedimiento:
Bate la clara de huevo cruda en un litro de agua fría, y llévala hasta la ebullición, sin dejar de batir. Fíltrala. El líquido que se obtiene es una fina suspensión, muy estable, de albúmina desnaturalizada.

Prepara, por otro lado, jugo gástrico artificial, diluyendo en 100 ml de agua, 1 g de jugo gástrico desecado, que se vende en las farmacias bajo la denominación de “pepsina”, nombre que proviene de la enzima principal que contiene.
Prepara en cuatro tubos de ensayo, las siguientes mezclas:

1.    6 ml de albúmina + 6 ml de agua.
2.    6 ml de albúmina + 1,5 ml de agua + 4,5 ml de HCl, 0.1 N.
3.    6 ml de albúmina + 1,5 ml de pepsina + 4,5 ml de agua
4.    6 ml de albúmina + 1,5 ml de pepsina + 4,5 ml de HC1,  0.1 N.
5.   
A continuación coloca los tubos a baño María, a 40° C. Algunos minutos más tarde, únicamente en el tubo 4 se producirá un aclarado, esto es consecuencia de la actividad de la pepsina que, en medio ácido, ha hidrolizado a la albúmina.






Resultados:
Contenido del tubo
Reacción Biuret
Albúmina + agua
Color café
Albúmina + agua +ácido clorhídrico
Color café
Albúmina + pepsina + agua
Color café
Albúmina + pepsina +ácido clorhídrico
Color café con un anillo alrededor.


Análisis de resultados:
Elabora la caracterización de los siguientes conceptos: proteína, hidrólisis, enlace peptídico, polipéptido, aminoácido, digestión química, enzima activa, enzima inactiva.

Replanteamiento de las predicciones de los alumnos:

-El Reactivo de Biuret es aquel que detecta la presencia de proteínas, péptidos cortos y otros compuestos con dos o más enlaces peptídicos en sustancias de composición desconocida.

Está hecho de hidróxido potásico (KOH) y sulfato cúprico (CuSO4), junto con tartrato de sodio y potasio (KNaC4O6·4H2O). El reactivo, de color azul, cambia a violeta en presencia de proteínas, y  a rosa cuando se combina con polipéptidos de cadena corta.


Conceptos claves: Digestión de proteínas, pepsina, sitio de producción de pepsina en el aparato digestivo humano, sitio de hidrólisis total de las proteínas en el aparato digestivo humano.


Relaciones.
Esta actividad de laboratorio coadyuva a la construcción del concepto de digestión química, en este caso, asociada con la degradación de las proteínas. Es importante relacionar los órganos donde se inicia y termina esta hidrólisis.













Actividad experimental 4: alimentación heterótrofa.

Digestión de las grasas
Preguntas generadoras:
  1. ¿Cómo actúa la bilis sobre las grasas?
  2. ¿En dónde se produce la bilis?
3.    ¿Cuál es el papel que desempeñan las grasas del alimento, en los animales?
4.    ¿Por qué es necesario que se emulsifiquen las proteínas del alimento?
5.    ¿Qué es la emulsificación de una grasa?
Planteamiento de las hipótesis:
La bilis es producida en el hígado y actúa como emulcificante sobre las grasas, es decir, ayuda a ser digeridas por nuestro aparato digestivo. En este caso el onoton es una bilis industrial y actuara como tal sobre las grasa, osea, el agua con aceite y la emulsificara.
Introducción
Las grasas forman parte de los alimentos. El agua es el medio en el que se disuelven muchas de las substancias que forman parte del alimento, las grasas no se disuelven en el agua o se disuelven muy poco. Para que las enzimas digestivas puedan actuar sobre las grasas, es necesario que estas se transformen en pequeñas gotas que se puedan dispersar en el agua, a esta mezcla se le llama emulsión. Existen substancias  que emulsifican las grasas como los detergentes, y un producto del hígado del ser humano, la bilis.
Las moléculas de grasa están constituidas por una cabeza hidrofílica (atraída por el agua) y una cola hidrofóbica (que no se mezcla con el agua). Las moléculas del aceite al agregarse al agua se acomodan como grandes gotas, en las cuales las cabezas se orientan hacia las moléculas de agua y las colas hacia adentro. La substancia emulsificadora como la bilis rompe las grandes gotas en pequeñas, lo que sucede en el intestino delgado. Una vez emulsificadas las grasas actúan sobre ellas la enzima llamada lipasa (enzima digestiva) que separa las cabezas de las colas

Objetivos:
·          Identificar la acción de la bilis sobre las grasas
·          Conocer en que consiste la emulsificación de una grasa
·          Conocer algunas propiedades químicas de las grasas
·          Identificar el inicio de la digestión química de las grasas
·          Comprender que la digestión de los alimentos depende de su composición química.
Material:
3 vasos de precipitados de 250 ml
1 probeta de 100 ml
Material biológico:
Aceite de cocina
Sustancias:
Medicamento que contenga bilis (Onoton)
Agua destilada
Equipo:
Parrilla con agitador magnético
Balanza granataria electrónica
Procedimiento:
Vierte 100 ml de agua tibia en los dos vasos de precipitados. Vierte 5 ml de aceite de cocina en los dos vasos de precipitados. En otro de los vasos de precipitados prepara una solución al 1% de bilis (pesa 1 g de bilis y disuélvelo en 100 ml de agua). A uno de los vasos de precipitados que contiene aceite y agua agréguele 10 ml de la solución de bilis al 1%. Agita ambos vasos de precipitados y observa que sucede, deja de agitar y vuelve a observar que le sucede a las mezclas.

Resultados:
Contenido del tubo
Durante el agitado
(tamaño de las gotas)
1 min después de agitarlo (tamaño de las gotas)
Agua + aceite
Las gotas se van haciendo un poco más pequeñas mientras, pero el cambio no es muy notorio.
El tamaño de las gotas es casi igual, son muy grandes.
Agua + aceite + bilis
Las gotas sufren un gran cambio de tamaño, casi desaparecen.
Las gotas solo aumentan un poco de tamaño pero se notan como encapsuladas y no son tantas.


Análisis de resultados:
Elabora la caracterización de los siguientes conceptos: grasa, emulsificación, hidrofílico, hidrofóbico.
Grasa: grasa es un término genérico para designar varias clases de lípidos, aunque generalmente se refiere a los acilglicéridos, ésteres en los que uno, dos o tres ácidos grasos se unen a una molécula de glicerina, formando monoglicéridos, diglicéridos y triglicéridos respectivamente. Las grasas están presentes en muchos organismos, y tienen funciones tanto estructurales como metabólicas.
Emulcificacion: Una emulsión es una mezcla de dos líquidos inmiscibles de manera más o menos homogénea. Un líquido (la fase dispersa) es dispersado en otro (la fase continua o fase dispersante). Muchas emulsiones son emulsiones de aceite/agua, con grasas alimenticias como uno de los tipos más comunes de aceites encontrados en la vida diaria.
Hidrofilico: es el comportamiento de toda molécula que tiene afinidad por el agua. En una disolución o coloide, las partículas hidrófilas tienden a acercarse y mantener contacto con el agua. Las moléculas hidrófilas son a su vez lipófobas, es decir no tienen afinidad por los lípidos o grasas y no se mezclan con ellas.
Hidrofobico: Por lo tanto, algo hidrófobo es aquello que tiene horror al agua, el término se aplica a aquellas sustancias que son repelidas por el agua o que no se pueden mezclar con ella. Un ejemplo de sustancias hidrófobas son los aceites.
Emulsificacion.
  


Replanteamiento de las predicciones de los alumnos:
La bilis Interviene en los procesos de digestión funcionando como emulsionante (parecido a los catalizadores) de los ácidos grasos es decir, las convierten en gotitas muy pequeñas que pueden ser atacadas con más facilidad por los jugos digestivos. El onoton actúa de igual manera porque es bilis industrial,

Conceptos clave: Emulsificación de las grasas, bilis, sitio de producción de bilis, sitio de degradación de las grasas en el aparato digestivo, digestión química.
Relaciones. Esta actividad de laboratorio apoya la comprensión del concepto de digestión química, por otro lado, permite introducir al estudiante en la identificación de la digestión como un proceso complejo cuya elaboración esta en función de la complejidad química del alimento y de la capacidad enzimática del animal en cuestión.


























Actividad experimental 5, Octava etapa
La alimentación y excreción en Paramecium
Preguntas generadoras:
  1. ¿Qué semejanzas y diferencias encuentras entre la alimentación de un organismo unicelular heterótrofo y los heterótrofos multicelulares?
  2. ¿A qué crees que se deban las diferencias?
  3. ¿Cómo afecta la alimentación heterótrofa las características anatómicas de su organismo?
Planteamiento de las hipótesis:

Introducción
Paramecium  es un protoctista unicelular que generalmente se encuentra en aguas estancadas. Es muy útil en los laboratorios de biología porque es abundante y fácil de conservar en el laboratorio. La única célula que constituye a este organismo realiza las mismas funciones vitales que cualquier otro ser vivo multicelular, es un protoctista parecido a los animales porque su forma de nutrición es heterótrofa, es capaz de moverse  y capturar su alimento.
Objetivos:
·          Observar como un organismo unicelular lleva a cabo la alimentación.
·          Identificar como realiza el Paramecio la regulación del agua.
·          Comprender como realiza la excreción un organismo unicelular.
Material:
Portaobjetos
Cubreobjetos
Goteros
Algodón
Material biológico:
Cultivos de paja, arroz y trigo para la obtención de Paramecium [1]
Sustancias:
Acetona
Polvo de carmín
Equipo:
Microscopio compuesto
Microscopio de disección
Procedimiento:
Examina los cultivos  con un microscopio  de disección y observa las áreas de mayor concentración de paramecios ¿Cuál es la actividad de  estos organismos? ¿Cómo se comportan ante la luz?
El movimiento y el tamaño aumentan al observar a través del microscopio. La rapidez aparente de los paramecios hace difícil su observación en el campo del microscopio. Se pueden anestesiar si se coloca una  gota de acetona  en la preparación que contiene el cultivo. También se puede reducir la movilidad colocando en la preparación unas fibras de algodón. Antes de tapar la preparación con el cubreobjetos coloca un poco de polvo de carmín con una espátula, después coloca el cubreobjetos.
Observa el organismo en sus diferentes niveles variando el enfoque con el tornillo micrométrico ¿Cuál es el extremo anterior del organismo el achatado o el puntiagudo? Observa al paramecio y haz un dibujo anotando las estructuras que hayas podido identificar.
Describe el movimiento general del paramecio. Cambia  a mayor  aumento, si es necesario reduce la luz. Los cilios deben estar en movimiento y se observan mejor en los bordes visibles del organismo. ¿Son diferentes los cilios en los extremos opuestos de la célula? Observas algún ritmo en el movimiento de los cilios.
Localiza una concavidad lateral de la célula. Observa como las partículas son engullidas por este orificio. ¿Cómo logra el paramecio que las partículas de carmín entre por el orificio? ¿Existe alguna estructura que se proyecte al interior del citoplasma? ¿Qué forma tiene? Describe la trayectoria de las partículas de carmín en el interior del paramecio ¿Dónde se acumulan las partículas de carmín? Observa un rato al organismo y podrás ver que expulsa el carmín por un punto por debajo del orificio de entrada, elabora un dibujo de tus observaciones.
El agua se está difundiendo constantemente al interior del paramecio, si este no es capaz de eliminarla puede explotar. Observa la región próxima al extremo achatado, podrás ver una estructura en forma de estrella que se abre y aparentemente “desaparece” a intervalos regulares ¿cómo se llama esta estructura?
Cuando se observa la “estrella”, la vacuola se esta llenando de agua. La aparente “desaparición” es la contracción de la vacuola, cuando la vacuola se contrae, el agua es forzada a salir del paramecio. Muchas especies de paramecios tienen dos vacuolas contráctiles. Una se encuentra generalmente en el extremo achatado de la célula y la otra en el extremo puntiagudo del organismo.
Resultados:
Dibuja al Paramecium y las estructuras celulares que observaste.

Análisis de resultados:
Elabora la caracterización de los siguientes conceptos: Organismo unicelular, organelos, citostoma, citofaringe, ingestión celular, excreción celular

Replanteamiento de las predicciones de los alumnos:



Conceptos claves: Ingestión y excreción unicelular, organismo unicelular.
Relaciones. En este tema es fundamental que los alumnos relacionen a los organismos unicelulares con las células que constituyen a los organismos multicelulares y que se establezcan claramente las diferencias entre el nivel celular y el multicelular. Un aspecto importante es establecer la característica casi exclusiva de Paramecium de contener una boca u orificio permanente de ingestión de los alimentos.


[1] Los cultivos se pueden preparar hirviendo sendos recipientes con arroz, paja y trigo, después de enfriar se inoculan un gotero de agua estancada y se deja en la oscuridad. Es conveniente prepararlos entre 10 y 15 días de anticipación a la realización de la práctica.